Myxero ~ Welcome To My Blogspot - Thanks For Visiting ~ Myxero

Kamis, 28 Maret 2013

Pembangkit Listrik yang menghasilkan Tenaga Besar

Pembangkit Listrik Tenaga Nuklir

Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik.
PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya 600-1200 MWe.
Hingga saat ini, terdapat 442 PLTN berlisensi di dunia dengan 441 diantaranya beroperasi di 31 negara yang berbeda. Keseluruhan reaktor tersebut menyuplai 17% daya listrik dunia.

Sejarah
Reaktor nuklir yang pertama kali membangkitkan listrik adalah stasiun pembangkit percobaan EBR-I pada 20 Desember 1951 di dekat Arco, Idaho, Amerika Serikat. Pada 27 Juni 1954, PLTN pertama dunia yang menghasilkan listrik untuk jaringan listrik (power grid) mulai beroperasi di Obninsk, Uni Soviet . PLTN skala komersil pertama adalah Calder Hall di Inggris yang dibuka pada 17 Oktober 195.

Jenis - Jenis PLTN
PLTN dikelompokkan berdasarkan jenis reaktor yang digunakan. Tetapi ada juga PLTN yang menerapkan unit-unit independen, dan hal ini bisa menggunakan jenis reaktor yang berbeda. Sebagai tambahan, beberapa jenis reaktor berikut ini, di masa depan diharapkan mempunyai sistem keamanan pasif.

Reaktor Fisi
Reaktor daya fisi membangkitkan panas melalui reaksi fisi nuklir dari isotop fissil uranium dan plutonium.
Selanjutnya reaktor daya fissi dikelompokkan lagi menjadi:
  • Reaktor thermal menggunakan moderator neutron untuk melambatkan atau me-moderate neutron sehingga mereka dapat menghasilkan reaksi fissi selanjutnya. Neutron yang dihasilkan dari reaksi fissi mempunyai energi yang tinggi atau dalam keadaan cepat, dan harus diturunkan energinya atau dilambatkan (dibuat thermal) oleh moderator sehingga dapat menjamin kelangsungan reaksi berantai. Hal ini berkaitan dengan jenis bahan bakar yang digunakan reaktor thermal yang lebih memilih neutron lambat ketimbang neutron cepat untuk melakukan reaksi fissi.
  • Reaktor cepat menjaga kesinambungan reaksi berantai tanpa memerlukan moderator neutron. Karena reaktor cepat menggunkan jenis bahan bakar yang berbeda dengan reaktor thermal, neutron yang dihasilkan di reaktor cepat tidak perlu dilambatkan guna menjamin reaksi fissi tetap berlangsung. Boleh dikatakan, bahwa reaktor thermal menggunakan neutron thermal dan reaktor cepat menggunakan neutron cepat dalam proses reaksi fissi masing-masing.
  • Reaktor subkritis menggunakan sumber neutron luar ketimbang menggunakan reaksi berantai untuk menghasilkan reaksi fissi. Hingga 2004 hal ini hanya berupa konsep teori saja, dan tidak ada purwarupa yang diusulkan atau dibangun untuk menghasilkan listrik, meskipun beberapa laboratorium mendemonstrasikan dan beberapa uji kelayakan sudah dilaksanakan.

Reaktor Fusi
Fusi nuklir menawarkan kemungkinan pelepasan energi yang besar dengan hanya sedikit limbah radioaktif yang dihasilkan serta dengan tingkat keamanan yang lebih baik. Namun demikian, saat ini masih terdapat kendal-kendala bidang keilmuan, teknik dan ekonomi yang menghambat penggunaan energi fusi guna pembangkitan listrik. Hal ini masih menjadi bidang penelitian aktif dengan skala besar seperti dapat dilihat di JET, ITER, dan Z machine.

Keuntungan 
  1. Tidak menghasilkan emisi gas rumah kaca
  2. Tidak mencemari udara
  3.  Sedikit menghasilkan limbah pada 
  4. Biaya bahan bakar rendah 
  5. Ketersedian bahan bakar yang melimpah 
  6. Baterai nuklir
Kerugian 
  1. Risiko kecelakaan nuklir
  2. Limbah Nuklir

Pembangkit Listrik Tenaga Surya

pada tahun 1941 Russell Ohl dari Bell Laboratory mengamati silikon polikristalin akan membentuk buit in junction, karena adanya efek segregasi pengotor yang terdapat pada leburan silikon. Jika berkas foton mengenai salah satu sisi junction, maka akan terbentuk beda potensial di antara junction, dimana elektron dapat mengalir bebas. Sejak itu penelitian untuk meningkatkan efisiensi konversi energi foton menjadi energi listrik semakin intensif dilakukan. Berbagai tipe sel surya dengan beraneka bahan dan konfigurasi geometri pun berhasil dibuat.

Prinsip Kerja Sel Surya

Sel surya adalah dioda semikonduktor yang dapat mengubah cahaya menjadi listrik dan merupakan komponen utama dalam sistem PLTS.

Gambar Sel Surya sebagai Komponen Utama PLTS
Selain terdiri atas modul-modul sel surya, komponen lain dalam sistem PLTS adalah Balance of System (BOS) berupa inverter dan kontroller. PLTS sering dilengkapi dengan batere sebagai penyimpan daya, sehingga PLTS dapat tetap memasok daya listrik ketika tidak ada cahaya matahari.
Pembangkitan energi listrik pada sel surya terjadi berdasarkan efek fotolistrik, atau disebut juga efek fotovoltaik, yaitu efek yang terjadi akibat foton dengan panjang gelombang tertentu yang jika energinya lebih besar daripada energi ambang semikonduktor, maka akan diserap oleh elektron sehingga elektron berpindah dari pita valensi (N) menuju pita konduksi (P) dan meninggalkan hole pada pita valensi, selanjutnya dua buah muatan, yaitu pasangan elektron-hole, dibangkitkan. Aliran elektron-hole yang terjadi apabila dihubungkan ke beban listrik melalui penghantar akan menghasilkan arus listrik.

Gambar Prinsip Kerja Sel Surya

Tipe Sel Surya

Ditinjau dari konsep struktur kristal bahannya, terdapat tiga tipe utama sel surya, yaitu sel surya berbahan dasar monokristalin, poli (multi) kristalin, dan amorf. Ketiga tipe ini telah dikembangkan dengan berbagai macam variasi bahan, misalnya silikon, CIGS, dan CdTe.
Berdasarkan kronologis perkembangannya, sel surya dibedakan menjadi sel surya generasi pertama, kedua, dan ketiga. Generasi pertama dicirikan dengan pemanfaatan wafer silikon sebagai struktur dasar sel surya; generasi kedua memanfaatkan teknologi deposisi bahan untuk menghasilkan lapisan tipis (thin film) yang dapat berperilaku sebagai sel surya; dan generasi ketiga dicirikan oleh pemanfaatan teknologi bandgap engineering untuk menghasilkan sel surya berefisiensi tinggi dengan konsep tandem atau multiple stackes.
Kebanyakan sel surya yang diproduksi adalah sel surya generasi pertama, yakni sekitar 90% (2008). Di masa depan, generasi kedua akan makin populer, dan kelak akan mendapatkan pangsa pasar yang makin besar. European Photovoltaic Industry Association (EPIA) memperkirakan pangsa pasar thin film akan mencapai 20% pada tahun 2010. Sel surya generasi ketiga hingga saat ini masih dalam tahap riset dan pengembangan, belum mampu bersaing dalam skala komersial.
Artiket Terkait:


Source : PLTN Wikipedia
             PLTS   

Tidak ada komentar:

Posting Komentar